Get standard error, p-value, and confidence interval for one ltmle object Summarizing results from Longitudinal Targeted Maximum Likelihood Estimation (ltmle)
Source:R/ltmle.R
summary.ltmle.Rd
These functions are methods for class ltmle
or summary.ltmle
objects.
Usage
# S3 method for ltmle
summary(object, estimator = ifelse(object$gcomp, "gcomp", "tmle"), ...)
# S3 method for ltmleEffectMeasures
summary(object, estimator = ifelse(object$gcomp, "gcomp", "tmle"), ...)
# S3 method for ltmleMSM
summary(object, estimator = ifelse(object$gcomp, "gcomp", "tmle"), ...)
# S3 method for summary.ltmleMSM
print(
x,
digits = max(3, getOption("digits") - 3),
signif.stars = getOption("show.signif.stars"),
...
)
# S3 method for summary.ltmle
print(x, ...)
# S3 method for ltmleEffectMeasures
print(x, ...)
# S3 method for summary.ltmleEffectMeasures
print(x, ...)
# S3 method for ltmleMSM
print(x, ...)
# S3 method for ltmle
print(x, ...)
Arguments
- object
an object of class "
ltmle
" or "ltmleMSM
" or "ltmleEffectMeasures
", usually a result of a call toltmle
orltmleMSM
.- estimator
character; one of "tmle", "iptw", "gcomp". The estimator for which to get effect measures. "tmle" is valid iff the original ltmle/ltmleMSM call used gcomp=FALSE. "gcomp" is valid iff the original ltmle/ltmleMSM call used gcomp=TRUE
- ...
further arguments passed to or from other methods.
- x
an object of class "
summary.ltmle
" or "summary.ltmleMSM
" or "ltmleEffectMeasures
", usually a result of a call tosummary.ltmle
orsummary.ltmleMSM
.- digits
the number of significant digits to use when printing.
- signif.stars
logical. If
TRUE
, significance stars are printed for each coefficient.
Value
summary.ltmle
returns an object of class
"summary.ltmle
", a list with components
- treatment
a list with components summarizing the estimate of
object
estimate
- the parameter estimate of \(E[Y_d]\)std.dev
- estimated standard deviation of parameterp.value
- two-sided p-valueCI
- vector of length 2 with 95 percent confidence interval
- call
the matched call to
ltmle
forobject
- estimator
the
estimator
input argument- variance.estimate.ratio
ratio of the TMLE based variance estimate to the influence curve based variance estimate
summary.ltmleEffectMeasures
returns an object of class
"summary.ltmleEffectMeasures
", a list with same components as
summary.ltmle
above, but also includes:
- effect.measures
a list with components, each with the same components as
treatment
insummary.ltmle
abovetreatment
- corresponds to the first in the listabar
(orrule
) passed toltmle
control
- corresponds to the second in the listabar
(orrule
) passed toltmle
ATE
- average treatment effectRR
- relative riskOR
- odds ratio
summary.ltmleMSM
returns an object of class
"summary.ltmleMSM
", a matrix with rows for each MSM parameter and
columns for the point estimate, standard error, 2.5percent confidence
interval, 97.5percent confidence interval, and p-value.
Details
summary.ltmle
returns the parameter value of the estimator, the
estimated variance, a 95 percent confidence interval, and a p-value.
summary.ltmleEffectMeasures
returns the additive treatment effect for
each of the two objects in the abar
list passed to ltmle
.
Relative risk, and odds ratio are also returned, along with the variance,
confidence interval, and p-value for each.
summary.ltmleMSM
returns a matrix of MSM parameter estimates.
Examples
rexpit <- function(x) rbinom(n = length(x), size = 1, prob = plogis(x))
# Compare the expected outcomes under two counterfactual plans: Treatment plan:
# set A1 to 1 if W > 0, set A2 to 1 if W > 1.5, always set A3 to 1 Control plan:
# always set A1, A2, and A3 to 0
W <- rnorm(1000)
A1 <- rexpit(W)
A2 <- rexpit(W + 2 * A1)
A3 <- rexpit(2 * A1 - A2)
Y <- rexpit(W - A1 + 0.5 * A2 + 2 * A3)
data <- data.frame(W, A1, A2, A3, Y)
treatment <- cbind(W > 0, W > 1.5, 1)
control <- matrix(0, nrow = 1000, ncol = 3)
result <- ltmle(data, Anodes = c("A1", "A2", "A3"), Ynodes = "Y", abar = list(treatment,
control))
#> Qform not specified, using defaults:
#> formula for Y:
#> Q.kplus1 ~ W + A1 + A2 + A3
#>
#> gform not specified, using defaults:
#> formula for A1:
#> A1 ~ W
#> formula for A2:
#> A2 ~ W + A1
#> formula for A3:
#> A3 ~ W + A1 + A2
#>
#> Estimate of time to completion: < 1 minute
print(summary(result))
#> Estimator: tmle
#> Call:
#> ltmle(data = data, Anodes = c("A1", "A2", "A3"), Ynodes = "Y",
#> abar = list(treatment, control))
#>
#> Treatment Estimate:
#> Parameter Estimate: 0.76323
#> Estimated Std Err: 0.054433
#> p-value: <2e-16
#> 95% Conf Interval: (0.65654, 0.86991)
#>
#> Control Estimate:
#> Parameter Estimate: 0.46619
#> Estimated Std Err: 0.064218
#> p-value: 3.8871e-13
#> 95% Conf Interval: (0.34032, 0.59205)
#>
#> Additive Treatment Effect:
#> Parameter Estimate: 0.29704
#> Estimated Std Err: 0.082759
#> p-value: 0.00033163
#> 95% Conf Interval: (0.13484, 0.45925)
#>
#> Relative Risk:
#> Parameter Estimate: 1.6372
#> Est Std Err log(RR): 0.15373
#> p-value: 0.0013429
#> 95% Conf Interval: (1.2113, 2.2129)
#>
#> Odds Ratio:
#> Parameter Estimate: 3.6911
#> Est Std Err log(OR): 0.38754
#> p-value: 0.00075227
#> 95% Conf Interval: (1.727, 7.8891)
#>
## For examples of summary.ltmle and summary.ltmleMSM, see example(ltmle)